

PGQ

Instituto de Química
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Avaliação Processo Seletivo 2017/1

- A prova escrita é composta de 10 questões, sendo 4 obrigatórias e 6 eletivas.
- O candidato deverá responder 8 questões:
 - → as 4 obrigatórias (questões de números 1 a 4)
 - \rightarrow e outras 4 escolhidas dentre as eletivas (questões de números 5 a 10).
- Conforme regem os itens 5.1.1.1 (mestrado) e 5.3.1.1 (doutorado) do EDITAL IQUFU/PPQUI Nº 001/2016, a prova vale oitenta e sessenta pontos, respectivamente. No caso do doutorado será feita regra de três para o cálculo da nota final.
- Marque com "X" no quadro abaixo, as 4 questões eletivas que escolheu responder, pois somente as assinaladas serão corrigidas.

Nº DA QUESTÃO	5	6	7	8	9	10
QUESTÕES RESPONDIDAS						

1		Tabela periódica dos elementos - IUPAC									18						
1 H Hidrogênio 1,0	2											13	14	15	16	17	Hélio
3 Li Lítio 6,9	Be Berílio 9,0											5 B Boro 10,8	Carbono	7 N Nitrogênio 14,0	Oxigênio 16,0	9 Flúor 19,0	Ne Neônio 20,2
Na Sódio 23,0	Mg Magnésio 24,3	3	4	5	6	7	8	9	10	11	12	Al Al Alumínio 27,0	Silicio 28,1	P Fósforo 31,0	16 S Enxofre 32,1	17 CI Cloro 35,5	Ar Argônio 39,9
19 K Potássio 39,1	20 Ca Cálcio 40,1	SC Escândio 45,0	22 Ti Titânio 47,9	Vanádio 50,9	Cromo 52,0	Mn Manganês 54,9	Ferro 55,8	Co Cobalto 58,9	Ni Niquel 58,7	Cu Cobre 63,5	30 Zn Zinco 65,4	Galio 69,7	Ge Germânio 72,6	AS Arsênio 74,9	Selênio 79,0	Bromo 79,9	36 Kr Criptônio 83,8
Rb Rubídio	Sr Estrôncio	39 Y Itrio 57-71	Zr Zinco	Nb Nióbio	Mo Molibdênio	TC Tecnécio 75	Ru Rutênio	Rh Ródio	Pd Paládio	Ag Prata 79	Cd Cádmio	In Indio	Sn Estanho	Sb Antimônio	Te Te Telúrio 84	53 lodo 85	Xn Xenônio 86
Cs Césio 132,9	Ba Bário 137,3		Háfnio 178,5	Ta Tântalo 180,9	W Tungstênio 183,8	Re Rênio 186,2	Os Ósmio 190,2	Irídio 192,2	Pt Platina 195,1	Au Ouro 197,0	Hg Mercúrio 200,6	Tálio 204,4	Pb Chumbo 207,2	Bi Bismuto 209,0	Polônio [209]	At Ástato [210]	Rn Radônio [222]
Frâncio [123]	88 Ra Radio [226]	89-103	Rf Rutherfórdio [261]	Db Dúbnio [262]	Seabórgio [266]	107 Bh Bóhrio [264]	HS Hássio [277]	Mt Meitnério [268]	DS Darmstádtio [271]	Rg Roentgênio [272]	Cn Copérnico [277]						
	iero atô		La Lantânio 138,8	58 Ce Cério 140,1	Praseodimio	Neodimio	Promécio [145]	Sm Samário 150,4	63 Eu Európio 152,0	Gd Gadolínio 157,3	65 Tb Térbio 158,9	Dy Disprósio 162,5	67 Ho Hôlmio 164,9	68 Er Érbio 167,3	69 Tm Túlio 168,9	70 Yb Itérbio 173,0	71 Lu Lutécio 175,0
	ímbo Nome ssa atôr		AC Actínio [227]	90 Th Tório 232,0	Pa Protactínio 231,0	92 U Urânio 238,0	93 Np Netúnio [237]	Plutônio [244]	95 Am Amerício [243]	96 Cm Cúrio [247]	97 Bk Berquélio [247]	98 Cf Califórnio [251]	99 Es Einstêinio [252]	100 Fm Férmio [257]	Md Mendelévio [258]	NO Nobélio [259]	Laurêncio [262]
т	abola	porió	diaa d	o II ID	AC ver	roão do	21 do	ianoir	o do 2	011 /	\cocc.	om: (13/00/	2011			

Tabela periódica da IUPAC, versão de 21 de janeiro de 2011. Acesso em: 03/09/2011. **IUPAC** – International Union of Pure and Applied Chemistry (União Internacional de Química Pura e Aplicada)

PGQ____

Programa de Pós-Graduação em Química Avaliação Processo Seletivo 2017/1

QUESTÕES 1 a 4 - OBRIGATÓRIAS

1º Questão (10 pontos) ______ obrigatória

a) Complexos de cobalto possuem uma série de aplicações, entre elas destaca-se o seu uso como catalisadores, corantes e agentes anticâncer, além de possuírem atividade antimicrobiana. Soluções dos complexos $[Co(NH_3)_6]^{2+}$, $[Co(OH_2)_6]^{2+}$ (ambos O_h), e do complexo $[CoCl_4]^{2-}$ são coloridas. Uma é rosa, outra amarela e uma terceira azul (Quadro 1). Considerando a série espectroquímica e os valores relativos de Δ_T e Δ_O atribua a cor de cada um dos complexos **(6,0 pontos)**.

Quadro 1 - Regiões de absorção.

Intervalo de comprimento de onda / nm	Cor absorvida	Cor complementar (observada)			
650-780	Vermelho	Azul esverdeado			
595-650	Laranja	Verde azulado			
560-595	Amarelo-verde	Roxo			
500-560	Verde	Rosa			
490-500	Verde azulado	Vermelho			
480-490	Azul esverdeado	Laranja			
435-480	Azul	Amarelo			
380-435	Violeta	Amarelo-verde			

Série espectroquímica:

CO, $CN^- > phen > NO_2^-$, en > py, $NH_3 > NCS^- > H_2O > O^{2-} > OH^- > F^- > Cl^- > S^{2-} > SCN^- > Br^- > l^-$

PGQ____

PGQ

Instituto de Química PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA Avaliação Processo Seletivo 2017/1

b) Para cada uma das configurações eletrônicas abaixo e padrões de desdobramento de campo cristalino em complexos octaédricos, escreva a configuração eletrônica esperada em termos dos conjuntos de

orbitais t _{2g} e e _g : (2,0 pontos)
d ⁴ campo forte:
d ⁷ campo fraco:
d ⁴ campo fraco:
d ⁷ campo forte:
c) Liste o número de elétrons desemparelhados para cada configuração. (2,0 pontos)
d ⁴ campo forte:
d ⁷ campo fraco:
d ⁴ campo fraco:
d ⁷ campo forte:

PGQ

Instituto de Química
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Avaliação Processo Seletivo 2017/1

Em laboratórios de análise química, as reações de precipitação e complexação são muito utilizadas em determinações de cátions e ânions, como indicadores, dentre outras necessidades cotidianas. Baseandose nestes fatos responda:

- a) Quantos gramas de iodato de bário (Ba(IO₃)₂), podem ser dissolvidos em 500,00 mL de água a 25 °C? Dados: K_{PS} Ba(IO₃)₂ = 1,57 × 10⁻⁹ e Massa Molar = 487 g mol⁻¹ **(4,0 pontos)**
- b) No método de Volhard usa-se Fe³⁺ como indicador, ocorrendo à formação do complexo Fe(SCN)²⁺, de cor vermelha bem intensa. Escreva as reações químicas que ocorrem entre os íons prata e ferro (III) com o tiocianato. **(4,0 pontos)**
- c) Qual a concentração em mol/L de Ag⁺ presente numa solução onde a [CrO₄²⁻] seja igual a 1.0×10^{-3} mol/L. Dado: K_{PS} Ag₂CrO₄ = 1.3×10^{-12} . (2,0 pontos)

PGQ____

PGQ

Instituto de Química Programa de Pós-Graduação em Química Avaliação Processo Seletivo 2017/1

3ª Questão (10 pontos)

obrigatória

Na química da atmosfera, a reação química abaixo converte SO₂ (o dióxido de enxofre predominantemente na combustão de materiais que contem enxofre) em SO₃, que pode combinar com água para formar ácido sulfúrico (e, portanto, contribui para a chuva ácida):

$$2 SO_2(g) + O_2(g)$$
 \longrightarrow $2 SO_3(g)$

- (a) Escreva a expressão da constante termodinâmica de equilíbrio (K_p). (2,0 pontos)
- (b) Calcule o valor de $\Delta_r G^0$ para este equilíbrio. (2,0 pontos)
- (c) Calcule o valor da constante de equilíbrio. (4,0 pontos)
- (d) Se 2,00 bar de SO_2 e 2,00 bar de O_2 forem fechados em um sistema na presença de pouca quantidade de SO_3 , em que direção o equilíbrio irá se deslocar? Justifique. **(2,0 pontos)**

Dados: $\Delta_{\rm f} {\rm G^0(SO_3)} = -368,0 \ {\rm kJ \ mol^{-1}} \ {\rm e} \ \Delta_{\rm f} {\rm G^0(SO_2)} = -300,13 \ {\rm kJ \ mol^{-1}} \ {\rm a} \ 298 \ {\rm K}.$ $\Delta_{\rm r} {\rm G^0} = \Sigma_{\rm produtos} \ v \ \Delta_{\rm f} {\rm G^0} \ - \ \Sigma_{\rm reagentes} \ v \ \Delta_{\rm f} {\rm G^0}$ $\Delta_{\rm r} {\rm G^0} = -RT \ln K_{\rm p}$

$$K_P = e^{rac{-\Delta_r G^0}{RT}}$$
 R = 8,314 J K⁻¹ mol⁻¹

PGQ____

PGQ

Programa de Pós-Graduação em Química Avaliação Processo Seletivo 2017/1

<u>4º Questão</u> (10 pontos)

obrigatória

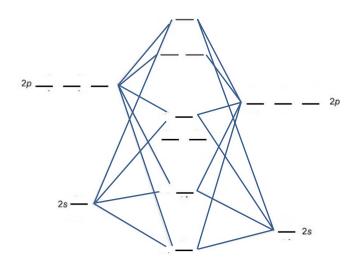
A partir do **ácido salicílico**, foram preparados o **Á**cido **A**cetil **S**alicílico (**AAS**) e o **Salol**, utilizados na terapêutica como analgésico e antisséptico intestinal, respectivamente. Veja reação abaixo.

- a) Proponha estruturas para o AAS e o Salol. (4,0 pontos)
- b) Qual é o nome IUPAC do ácido salicílico? Quais são as funções presentes neste composto? **(3,0 pontos)**
- c) Qual seria a quantidade de **Salol** obtida se fossem utilizados 5,00 g de ácido salicílico, sabendo que os demais reagentes estão em excesso? Detalhe, a reação tem um rendimento de 85%. **(3,0 pontos)**

PGQ____

Instituto de Química
Programa de Pós-Graduação em Química

PGQ


Avaliação Processo Seletivo 2017/1 ESCOLHA 4 DAS 6 QUESTÕES A SEGUIR

<u>5ª Questão</u> (10 pontos)

eletiva

O monóxido de carbono (CO) é um composto tóxico devido à sua capacidade para se ligar fortemente com o Fe^{2+} da molécula de hemoglobina.

(a) Preencha o diagrama de energia referente ao CO (use somente os elétrons de valência) com as respectivas simetrias dos orbitais e calcule a ordem de ligação. Essa molécula é paramagnética ou diamagnética? (4,0 pontos)

- (b) Desenhe a estrutura de Lewis do CO e atribua as cargas formais. Explique por que o CO tem um momento de dipolo de apenas 0,12 D. **(4,0 pontos)**
- (c) Qual dos átomos (C ou O) provavelmente formará ligações com o íon Fe²⁺ da hemoglobina? **(2,0** pontos)

PGQ____

PGQ

Instituto de Química Programa de Pós-Graduação em Química Avaliação Processo Seletivo 2017/1

6ª Questão (10 pontos)

eletiva

O cloreto de amônio (NH₄Cl) é um sólido incolor que, quando adicionado ao gelo, retarda sua fusão; por essa razão ele é espalhado sobre a neve nas rampas de esqui. As reações de formação de amônia, ácido clorídrico e cloreto de amônio são:

$$I - 1/2 N_{2(g)} + 3/2 H_{2(g)} \longrightarrow NH_{3(g)} H_1 = -46,0 \text{ kJ/mol}$$

$$II - 1/2 H_{2(g)} + 1/2 Cl_{2(g)} \longrightarrow HCl_{(g)} H_2 = -92,0 \text{ kJ/mol}$$

$$III - 1/2 N_{2(g)} + 2 H_{2(g)} + 1/2 Cl_{2(g)} \longrightarrow NH_4Cl_{(s)} H_3 = -314,0 \text{ kJ/mol}$$

a) A partir dessas reações e utilizando a Lei de Hess, calcule o calor da reação: (4,0 pontos)

$$NH_{3(g)} + HCI_{(g)} \longrightarrow NH_4CI_{(s)}$$

- b) escreva a equação da reação de hidrólise do cloreto de amônio, explique porque este sal sofre hidrólise e sua solução aquosa tem pH menor que 7,0 ? (3,0 pontos)
- c) Qual o valor de pH de um litro da solução tampão contendo 0,500 mol de NH_3 e 0,150 mol de NH_4Cl ? Dado: $K_b = 1,81 \times 10^{-5}$. (3,0 pontos)

PGQ____

PGQ

Instituto de Química
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Avaliação Processo Seletivo 2017/1

7º Questão (10 pontos)

eletiva

Considere a seguinte reação de formação da amônia, que ocorre a 25,0 °C e 1,00 atm:

$$3/2H_2(g) + 1/2N_2(g)$$
 NH₃(g)

- (a) Calcule ΔG da reação sabendo que a variação de entalpia é $\Delta H = -46,1$ kJ mol⁻¹ e a variação de entropia é $\Delta S = -99,6$ J K⁻¹ mol⁻¹. A reação é espontânea? **(3,0 pontos)**
- (b) Discuta como cada termo energético (ΔH e ΔS), da reação anterior, favorece ou desfavorece a espontaneidade. (3,0 pontos)
- (c) Calcule a temperatura na qual a reação atinge o equilíbrio. (4,0 pontos)

Dado: $\Delta G = \Delta H - T\Delta S$

PGQ

Instituto de Química
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Avaliação Processo Seletivo 2017/1

8ª Questão (10 pontos)

eletiva

O (–)-mentol (majoritário) e a (–)-mentona (minoritário) são produtos naturais encontrados nos óleos essenciais extraídos de espécies do gênero *Mentha* sp., bastante utilizados em balas, gomas, cigarros, cremes, etc, devido a sensação e gosto agradáveis. Na síntese descrita abaixo a (–)-mentona foi o produto majoritário da reação (oxidação). No entanto na reação inversa (redução), para obtenção do (–)-mentol, foi obtida uma mistura de dois compostos (–)-mentol e (+)-neomentol.

- a) Desenhe a estrutura do (+)-neomentol (com as descrições das estereoquímicas: Ou montos) (3,0 pontos)
- b) Desenhe a estrutura do (–)-mentol nas duas conformações cadeira possíveis e indique aquela que é mais estável. (3,0 pontos)
- c) Quais são as estereoquímicas (*R* ou *S*) dos carbonos assimétricos (1, 2 e 5) do (–)-mentol? **(3,0 pontos)** Qual é a relação estereoquímica entre o (–)-mentol e o (+)-neomentol. **(1,0 ponto)**

PGQ____

PGQ

Programa de Pós-Graduação em Química
Avaliação Processo Seletivo 2017/1

9ª Questão (10 pontos)

eletiva

O TCDD, ou 2,3,7,8-tetraclorodibenzo-*p*-dioxina, é um composto altamente tóxico que ganhou notoriedade em 2004, quando foi utilizado no assassinato de um político ucraniano.

- (a) Descreva a hibridização dos átomos assinalados (1, 2 e 3). **(2,0 pontos)** Essa molécula apresenta momento de dipolo? Justifique. **(2,0 pontos)**
- (b) Quantas ligações pi (π) e sigma (σ) há na molécula? (3,0 pontos)
- (c) Comparando o TCDD com o isômero proposto abaixo, qual deve ter maior ponto de fusão? Justifique. **(3,0 pontos)**

PGQ____

PGQ

Programa de Pós-Graduação em Química Avaliação Processo Seletivo 2017/1

10ª Questão (10 pontos) eletiva

Em solução ácida, o dissacarídeo sacarose (açúcar da cana) é convertido numa mistura dos monossacarídeos glicose e frutose numa reação de pseudo-primeira ordem. Num certo valor de pH, a meia-vida da sacarose é 28,4 min.

Sacarose

- (a) Qual o tempo necessário para que a concentração de uma amostra de sacarose caia de 16,0 mmol L^{-1} para 1,0 mmol L^{-1} ? (4,0 pontos)
- (b) Considerando a estrutura da sacarose (Figura), qual o tipo de interações intermoleculares predominante que ocorre nesta molécula? (3,0 pontos)
- (c) Compare a solubilidade da sacarose em água (H_2O) e em clorofórmio (CH_3CI). Em qual dos solventes ela seria mais solúvel? Justifique. (3,0 pontos)

PGQ____